## Problem 1: The Earth's Horizontal Magnetic Field

## Section I



Fig. 1

At O , the centre of coil, the magnetic field for a single turn is

$$
B_{0}=4 \times \frac{\mu_{0} i}{2 \pi\left(\frac{a}{2}\right)} \frac{(a / 2)}{\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}}=\frac{2 \sqrt{2} \mu_{0} i}{\pi a}
$$

At $P$, the horizontal magnetic field is

$$
B_{\mathrm{PX}}=4 \frac{\mu_{0} i}{2 \pi d} \frac{(a / 2)}{\sqrt{d^{2}+\left(\frac{a}{2}\right)^{2}}} \cos \phi
$$

[0.3 point]

From Fig. 1 we have $d=\sqrt{x^{2}+\left(\frac{a}{2}\right)^{2}}$ and $\cos \phi=\frac{(a / 2)}{\sqrt{x^{2}+\left(\frac{a}{2}\right)^{2}}}$.
Then, for a square coil of $N$ turns
or

$$
\begin{aligned}
& B_{p x}=\left(\frac{2 \mu_{0} i N}{\pi}\right) \cdot \frac{a / 2}{\sqrt{x^{2}+2\left(\frac{a}{2}\right)^{2}}} \cdot \frac{a / 2}{\left(x^{2}+\left(\frac{a}{2}\right)^{2}\right)} \\
& B_{p x}=\left(\frac{\mu_{0} a^{2} i N}{2 \pi}\right)\left[\frac{1}{\left(x^{2}+\left(\frac{a}{2}\right)^{2}\right) \sqrt{x^{2}+2\left(\frac{a}{2}\right)^{2}}}\right]
\end{aligned}
$$

which becomes $B_{\mathrm{O}}=\frac{2 \sqrt{2} \mu_{0} i N}{\pi a}$ as $x=0$.

## Section II

Measurements to justify that we can ignore the torsion of the string.

| length of string <br> $(\mathrm{cm})$ | time for10 oscillations <br> $(\mathrm{sec})$ <br> 2$\sqrt[9.38]{ } \mathbf{4}$ |
| :---: | :---: |
| 6 | 9.69 |
| 8 | 9.90 |
| 10 | 10.13 |
| 12 | 10.13 |
| 14 | 10.22 |
| 25 | 10.12 |

(Note that this data is from a different magnet used in Section III.)
We can see that the period is constant for length of string $\geq 10 \mathrm{~cm}$.

## Section III

The distance between the center of the magnet and the top surface of the platform for Part a), b) and c) is $14.0 \pm 0.5 \mathrm{~cm}$.

## a) Coil's magnetic field and Earth's horizontal magnetic field are in the same direction

Since the coil's magnetic field $(B)$ and Earth's magnetic field $\left(B_{H}\right)$ are in the same direction, from $T=2 \pi \sqrt{\frac{I}{m B}}$ we have $\frac{1}{T^{2}}=\beta B+\beta B_{\mathrm{H}}$ where $\beta=\frac{m}{4 \pi^{2} I} \quad$ By plotting linear graph of $\frac{1}{T^{2}}$ and $B$ we can find $B_{\mathrm{H}}$ from its slope and intercept.

Measurement of 20 oscillations at different distances from coil, we get the result as in table.

| $x$ (cm) | time for 20 oscillation (sec) |  | period $T$ (sec) | $B\left(\times 10^{-4} \mathrm{~T}\right)$ | $1 / T^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 7.44 | 7.35 | 0.370 | 2.878 | 7.305 |
| 12 | 8.19 | 8.13 | 0.408 | 2.259 | 5.998 |
| 14 | 8.87 | 8.91 | 0.443 | 1.773 | 5.088 |
| 15 | 9.5 | 9.62 | 0.478 | 1.573 | 4.377 |
| 17 | 9.91 | 9.97 | 0.497 | 1.245 | 4.048 |
| 18 | 10.43 | 10.35 | 0.518 | 1.111 | 3.734 |
| 19 | 11.47 | 11.31 | 0.569 | 0.994 | 3.085 |
| 20 | 11.78 | 11.81 | 0.591 | 0.891 | 2.866 |
| 21 | 12.41 | 12.34 | 0.619 | 0.801 | 2.613 |
| 23 | 13.41 | 13.4 | 0.671 | 0.652 | 2.222 |
| 25 | 14.22 | 14.28 | 0.714 | 0.535 | 1.964 |

$1 / T^{2}\left(s^{-2}\right)$


From graph we have: $\quad$ slope $\beta=(2.281 \pm 0.063) \times 10^{4} \mathrm{~s}^{-2} / \mathrm{T}$

$$
\text { intercept } \quad \beta B_{\mathrm{H}}=0.886 \pm 0.076 \mathrm{~s}^{-2}
$$

The value of Earth's magnetic field is

$$
B_{\mathrm{H}}=\frac{0.8856}{2.281 \times 10^{4}}=0.39 \times 10^{-4} \mathrm{~T}=0.39 \pm 0.04 \mathrm{G}
$$

The magnetic moment of magnet is $m=\beta^{2} 4 \pi^{2} M\left(\frac{L^{2}}{12}+\frac{r^{2}}{4}\right)=1.68 \pm 0.09 \mathrm{~A} \mathrm{~m}^{2}$
b) Earth's magnetic field only

Time for 30 oscillations: $36.28,36.25,36.24 \mathrm{~s}$.
Averaged period $T_{E}=1.209 \pm 0.001 \mathrm{~s}$

$$
B_{\mathrm{H}}=\frac{1}{T_{E}^{2} \beta}=\frac{1}{1.21^{2} \times 2.281 \times 10^{-4}}=0.30 \pm 0.01 \mathrm{G}
$$

## c) Coil's magnetic field and Earth's horizontal magnetic field are in opposite directions

The equilibrium (neutral) position $x_{0}=31.0 \pm 0.2 \mathrm{~cm}$.

$$
B_{\mathrm{H}}=\left(\frac{\mu_{0} a^{2} i N}{2 \pi}\right)\left[\frac{1}{\left(x_{0}^{2}+\left(\frac{a}{2}\right)^{2}\right) \sqrt{x_{0}^{2}+2\left(\frac{a}{2}\right)^{2}}}\right]=0.31 \pm 0.01 \mathrm{G}
$$

