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Introduction

Superfluidity is a property of flowing without friction. Everyday experience
tells us that motion of an ordinary fluid (say, water at room temperature) is
always accompanied by viscous dissipation of energy, so that the flow gradually
becomes slower unless it is maintained by external forces. In contrast, superfluid
exhibits no loss of kinetic energy: once excited the motion of superfluid can
continue indefinitely. Superfluidity was originally discovered experimentally in
liquid helium.

We study properties of superfluid helium at zero temperature. It will be
treated as an incompressible fluid with density ρ. Flow continuity (the fact that
the mass flowing into and the mass flowing out of a given infinitesimal volume
are equal) implies that the flux of helium velocity ~v through a closed surface is
always zero. Superfluid velocity in this aspect is similar to the magnetic field
intensity. Similarly to the magnetic field lines, “streamlines” are tangential to
the fluid velocity at each point and their density is proportional to its magnitude.

True superflow has an important property of being irrotational: circulation
of superfluid velocity ~v along any closed path within helium is zero∫

L

~v · d~l = 0.

This statement must be amended if superfluidity is absent along a thin “vor-
tex filament”. The thickness of the filament itself is of approximately atomic
dimensions a, but the vortex induces long range velocity field in surrounding
superfluid: velocity circulation around such filament is the circulation quantum1∣∣∣∣∣∣

∫
L

~v · d~l

∣∣∣∣∣∣ = 2πκ, (1)

1Circulation quantization is a macroscopic quantum effect and corresponds to the angular
momentum quantization in Bohr model. The circulation quantum can be expressed as κ =
h̄/mHe, where mHe is the mass of helium atom.
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and zero if the path can be contracted to a single point without crossing the
vortex, see Fig. 1. This supports the analogy between superflow and magnetic
field: superposition of two valid velocity distributions is a valid velocity distri-
bution and the velocity at any point is equal (up to a dimensional factor) to the
magnetic field produced by the unit currents running through a system of wires
representing vortex filaments.

Figure 1: Vortex filament (red) in superfluid (light blue). Velocity circulations
along paths L1, L2, L5, and L6 are all zero, but those for L3 and L4 are equal
to ±2πκ. Note that circulations along L3 and L4 have opposite signs.

A. Steady filament (0.75)

Consider a cylindrical beaker (radiusR0 � a) of superfluid helium and a straight
vertical vortex filament in its center Fig. 2.

A1 (0.25)

Plot the streamlines. Find out the velocity v at a point ~r.
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Figure 2: Straight vortex along the axis of a beaker.

The streamlines are circular. From the cir-
culation identity (1) it is obvious that v = κ/r.

• Streamlines are plotted correctly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1

• v = k
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.15

A2 (0.5)

Work out the free surface shape (height as a function of coordinate z(~r)) around
the vortex. Free fall acceleration is g, surface tension can be neglected.
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Consider a thin circular layer of the radius r. Equilibrium condition for
its surface is given by the requirement

g
dz

dr
=
v2

r
=
κ2

r3
. (2)

This equation is satisfied by the surface profile

z(r) = − κ2

2gr2
. (3)

• tanα = k2

gr3 or equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25

• z = − k2

2gr2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25

B. Vortex motion (1.25)

Free vortices move about in space with the flow2. In other words each element
of the filament moves with the velocity ~v of the fluid at the position of that
element.

As an example, consider a pair of counter-rotating straight vortices placed
initially at distance r0 from each other, see Fig. 3. Each vortex produces
velocity v0 = κ/r0 at the axis of another. As a result, the vortex pair moves
rectilinearly with constant speed v0 = κ/r0 so that the distance between them
remains unchanged.

Figure 3: Parallel vortex filaments with opposite circulations

B1 (0.25)

Consider two identical straight vortices initially placed at distance r0 from each
other as shown in Fig. 4. Find initial velocities of the vortices and draw their
trajectories.

2This is a consequence of momentum conservation, see next section.
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Figure 4: Parallel vortex filaments with equal circulations

Being advected by each other’s flow field, filaments
will rotate around a point halfway between them. The velocity is given
by v0 = κ/r0.

• Trajectories are plotted correctly . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.15

• Correct expression for velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1

A beaker of helium is filled with triangular lattice (u � R0) of identical
vertical vortices, see Fig. 5.

B2 (0.15)

Draw the trajectories of vortices A, B, and C (located in the center).

• Trajectories are plotted correctly (0.05 for each) . . . . . . . . . . . . 0.15
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Figure 5: Triangular lattice of vortices in a beaker. The view from above.

B3 (0.4)

Find velocity v(~r) of a vortex positioned at ~r.

Consider a circular path of radius r � u around the beaker center. The
circulation along this path is given by the number of vortices within it
(vortex density per unit area is (u2

√
3/2)−1):

2πrv = 2πκ
πr2

u2
√

3/2
. (4)

The velocity field

v =
2πκr

u2
√

3
. (5)

• Expression for vortex density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2

• Correct expression for v(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2
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B4 (0.2)

Find the distance AB(t) between the vortices A and B at time t. Treat AB(0)
as given.

This velocity pattern corresponds to the rotation of the lattice as a whole
around the beaker center with angular velocity

ω =
2πκ

u2
√

3
. (6)

AB(t) = AB(0)

• Correct answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2

B5 (0.25)

Work out the “smoothed out” (omitting the lattice structure) free helium surface
shape z(~r).

The surface shape is

z(r) =
ω2r2

2g
=

4π2κ2r2

6gu4
. (7)

• Correct answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25

C. Momentum and Energy (1.75)

The long range velocity field is the major contribution to the energy of a system
of vortices, it is insensitive to exact structure of the filament. The filament
itself can not be properly described by the macroscopic theory and apparent
singularities (infinities) are insignificant. Real physical quantities, such as the
energy, of the region inside a thin tube of radius a around the filament should
be neglected. Outside of this tube the density of superflow kinetic energy ρv2/2
(where ρ = const) is similar to the energy density of the magnetic field B2/(2µ0)
— they are both quadratic in respective variables. This similarity facilitates cal-
culation of the flow energy for a given system. For instance, given the inductance
of a circular wire loop L ≈ µ0R log(R/a), where R is the loop radius and a is
wire radius, we get the superfluid vortex loop energy3

U ≈ 2Rρπ2κ2 log(R/a). (8)

Total fluid momentum is also determined by the long range velocity distribu-
tion. It is obtained by integration of the momentum density ρ~v. Again, consider

3This expression is also valid only if logR/a� 1.
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a flow generated by a circular vortex loop placed in xy plane. It is obvious from
the symmetry considerations, that total momentum has only z component:

P =

∫
ρvzdV = ρ

∫ ∫ (∫
vzdz

)
︸ ︷︷ ︸

q(x,y)

dxdy (9)

The innermost integration is in fact an integration along appropriate paths
parallel to z-axis, see Fig. 6. From the circulation identity (1) it follows that

q(x, y) =

∫
L(x,y)

~v · d~l

is piecewise constant. Particularly, it is zero for paths passing outside the ring
and 2πκ for paths inside it. Total momentum is therefore

P = ρ · πR2 · 2πκ = 2π2ρR2κ. (10)

Figure 6: Velocity field of a circular vortex loop and integration paths (green)
for q(x, y) calculation.

C1 (0.3)

Consider a nearly rectangular vortex loop b× d, b� d, Fig. 7.
Indicate the direction of its momentum ~P . Find out the momentum magni-

tude.
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Figure 7: A nearly rectangular vortex loop, b� d

Momentum of a flat loop (see Introduc-
tion) is perpendicular to its plane and proportional to its area. For a
rectangular loop the magnitude is P = 2πκρbd.

• Correct direction of momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.15

• Correct expression for momentum magnitude . . . . . . . . . . . . . . . 0.15

C2 (0.7)

Calculate its energy U .

To produce equal magnetic and kinetic energy densities B2/(2µ0) =
ρv2/2, the magnetic field has to be B = v

√
µ0ρ = κ

√
µ0ρ/r. This

field is generated by a current I = 2πκ
√
ρ/µ0. Energy of the wire loop

can be found from the inductance U = LI2/2. Inductance of a nearly
rectangular wire loop:

L =
Φ

I
= 2dI−1

∫ b

a

µ0I

2πr
dr =

µ0d

π
log

b

a
. (11)

This gives for the energy

U = 2πκ2ρd log
b

a
(12)

• Integration limits are a and b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2

• Analogy with a magnitude field is used (U = LI2

2 , L = Φ
I ) or

energy is calculated as W =
∫
F dr, where F = dP

dt . . . . . . . . . . . 0.2

• Correct expression for energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3
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C3 (0.75)

Suppose we shift a long straight vortex filament by a distance b in x direction, see
Fig. 8. How much does the fluid momentum change? Indicate the momentum
change direction. The filament length (constrained by the vessel walls) is d.

Figure 8: Momentum changes whenever the vortex shifts with respect to the
fluid.

The momentum change is equal to the mo-
mentum of a long rectangular loop P = 2πκρbd.

• The result of C1 used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3

• Momentum change is parallel to Y axis . . . . . . . . . . . . . . . . . . . . . . 0.1

• Correct direction of momentum change . . . . . . . . . . . . . . . . . . . . . 0.15

• Correct expression for momentum change magnitude . . . . . . . . . 0.2

Interestingly, this provides an alternative approach to find the energy
of such a loop. Namely, if we slowly move one straight vortex in the
velocity field of another, then we apply a force

F = 2πκρdv = 2πκρd
κ

r
=

2πκ2ρd

r
. (13)

The work

W =

∫ b

a

2πκ2ρd

r
dr = 2πκ2ρd log

b

a
(14)

has to be performed to move it from distance a to b.
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D. Trapped charges (2.5)

Electrons, if injected in helium, get trapped by the vortex filaments. Here and
below polarizability of helium can be neglected (ε = 1).

D1 (0.5)

Figure 9: Straight vortex in a uniform electric field.

Consider a straight vortex charged with uniform linear density λ < 0 in a
uniform electric field ~E. Draw the vortex trajectory. Find its velocity as a
function of time.

Electric force F = Eλd moves the vortex
with velocity

v =
F

2πκρd
=

Eλ

2πκρ
(15)

perpendicular to ~E.

• Trajectory is straight line parallel to Y axis . . . . . . . . . . . . . . . . . . 0.1

• Correct direction of velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.2

• Correct expression for velocity magnitude . . . . . . . . . . . . . . . . . . . . 0.2

A circular vortex loop of radius R0 initially charged with uniform linear
density λ < 0 is placed in a uniform electric field ~E perpendicular to its plane,
opposite to its momentum ~P0.
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Figure 10: Vortex ring in a uniform electric field.

D2 (0.25)

Draw the trajectory of the loop center C.

• Trajectory plotted correctly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.25

D3 (1.5)

Find its velocity v(t) as a function of time.
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Electric force upon the loop F = 2πER0λ is constant and fluid momen-
tum linearly depends on time

P = P0 + 2πER0λt = 2π2ρR2κ. (16)

The loop is growing and its radius is increasing with time t

R =

√
R2

0 +
ER0λt

πρκ
. (17)

The loop velocity v can be easily found from a relationship between the
energy change rate and the momentum change rate

dU

dt
= Fv =

dP

dt
v. (18)

This gives for the velocity

v =
dU

dP
≈ κ

2R
log

R

a
=
κ log

√
R2

0+ER0λt/(πρκ)

a

2
√
R2

0 + ER0λt/(πρκ)
≈

κ log R0

a

2
√
R2

0 + ER0λt/(πρκ)
.

(19)
This means that the vortex is moving in the direction of the force but
its velocity is decreasing.

• Correct expression for R(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5

• Expression for v ∝ 1
R log(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5

• Correct expression for v(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5

D4 (0.25)

The field is switched off at a time t∗ when the velocity reaches the value v∗ =
v(t∗). Find the loop velocity v(t) at a later time t > t∗.

When E = 0 =⇒ P = const =⇒ R = const =⇒ v = const =⇒ v(t) =
v∗.

• Correct expression for v(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25

E. Influence of the boundaries (2.75)

Solid walls alter the velocity field created by a vortex filament, because the fluid
cannot flow through them. Mathematically this means that the wall-normal
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velocity component vanishes at the wall surface.

Figure 11: Straight vortex filament near a flat wall

E1 (0.5)

Draw the trajectory of a straight vortex, initially placed at a distance h0 from
a flat wall. Find its velocity as a function of time.

Well known technique of image charges (currents) in electrostatics (mag-
netostatics) can be directly used to solve this problem. Namely, the wall
can be “substituted” with a reflected fictitious vortex on the other side of
the wall. The velocity distribution of two vortices together in the upper
semi-space is identical to the one produce by a single vortex above the
wall. Indeed, the symmetry of the problem ensures that there is no flow
through the plane of symmetry. Thus, a straight vortex line situated a
distance h0 above a flat wall with its image behave as a pair of vortices
of opposite circulation a distance 2h0 apart. This means that the vortex
moves along the wall with velocity

v =
κ

2h0
. (20)

Illustration of the image method for the straight
vortex filament near a flat wall

• Trajectory is plotted correctly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25

• Correct direction of velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.1

• Correct expression for velocity magnitude . . . . . . . . . . . . . . . . . . . 0.15
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Consider a straight vortex placed in a corner at a distance h0 from both
walls.

Figure 12: Straight vortex filament in a corner

E2 (0.75)

What is the initial velocity v0 of the vortex?

The velocity of the filament is given by superposition of the velocities
~v1, ~v2 and ~v3 induced by the image vortices 1, 2 and 3, respectively (see
Fig. in E3 solution). One readily obtains

v1 =
κ

2h0
, v2 =

κ

2
√

2h0

, v3 =
κ

2h0
.

The modulus of the filament velocity at the initial moment is

v0 = |~v1 + ~v2 + ~v3| =
√

2v1 − v2 =
κ

2
√

2h0

• Ideas of using superposition principal and technique of image
charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25

• Correct direction of initial velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2

• Correct expression for initial velocity magnitude . . . . . . . . . . . . . 0.3

E3 (0.5)

Draw the trajectory of the vortex.
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Image vor-
tices in the corner.

• The trajectory has correct form and asymptote . . . . . . . . . . . . . . 0.5

E4 (1.0)

What is the velocity of the vortex v∞ after very long time?

Energy for the system of vortices is proportional to

Utot ∝ log

√
x2 + y2

a
− log

x

a
− log

x

a
. (21)

The energy conservation implies that

C =
x2 + y2

x2y2
=

2

h2
0

(22)

is constant along the trajectory. After very long time y → h0/
√

2 and
the vortex velocity is

v∞ =
κ

h0

√
2
. (23)

• Correct expression for velocity after very long time . . . . . . . . . . . 1.0

F. Charges + Walls (1.0)

The vortices in this section are charged with uniform linear density λ < 0.

F1 (0.5)

Draw the trajectory of a straight vortex initially placed at a distance h0 to a
dielectric wall with charge density σ < 0. Find its velocity as a function of time.
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Figure 13: Straight vortex near a charged wall

The vortex
velocity in electric field E = σ/(2ε0) is summed up with the fluid velocity
generated by the image vortex

v =
κ

2h0
− σλ

4πε0κρ
(24)

and parallel to the wall. Its direction depends on the competition of the
two terms above.

• Trajectory is plotted correctly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25

• Correct expression for velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25

F2 (0.5)

Draw the trajectory of a straight vortex initially placed at a distance h0 to a
conducting wall. Find its velocity as a function of time.
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Figure 14: Straight vortex near a conducting wall

The conduct-
ing wall produces electric field identical to the field of an image filament
with opposite charge density E = −λ/(4πε0h0). The velocity is then

v =
λ2

8π2ε0κρh0
+

κ

2h0
. (25)

• Trajectory is plotted correctly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25

• Correct expression for velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25
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