Marking scheme

(minimal score 0.1 pt)

Marker \qquad Student \qquad
TOTAL \qquad

Task	Criteria	Max. points	Marker	Consensus
A1	Diffraction grating equation	0.1		
A2	$\theta(\varphi)$ measurements: -0.2 for each point (not greater than 1.0) φ in range 35-45 θ in range 15-65	1.0		
A3	Linearization: $-\sin ^{2} \theta$ from $\sin ^{2} \varphi$ dependence; Calculation of the sin $^{2} \theta$ and $\sin ^{2} \varphi$ values; Graph plotting (only in linearized coordinates) (axis labeled and scaled, experimental points plotted,,	$0.9=$ linear fit line shown);	$0.3 x 3$	

B6	$\Delta \lambda$ calculation: Transition from θ to λ; Low $\Delta \theta$ value approximation Numerical value for Δn in range $\mathbf{0 , 0 9 - 0 , 1 5}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & 0.4 \end{aligned}$		
B7	Numerical value for θ_{2} in range $30-60^{\circ}$	0.3		
B8	Formulae for p and $n_{A A O}$ calculation Numerical value for p in range $\mathbf{0 , 1 5 - 0 , 3 5}$ Numerical value for $n_{A A O}$ in range 1,55-1,75	$\begin{aligned} & \hline 0.2+0.2 \\ & 0.3 \\ & 0.3 \end{aligned}$		
B9	Formula for p_{i} versus n_{i} n_{1}, n_{2} values selection Numerical values for: p_{1} in range $\mathbf{0 , 0 5 - \mathbf { 0 , 2 5 }}$ p_{2} in range $\mathbf{0 , 2}-\mathbf{0 , 4 5}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \\ & 0.2 \\ & 0.2 \end{aligned}$		
	Part B total	5.0		
C1	Values $\lambda_{1}^{s p}$ in range $\pm \mathbf{3 0} \mathbf{~ n m}$ from the real value for the sample $\lambda_{2}^{s p}$ in range $\pm \mathbf{3 0} \mathbf{~ m m}$ from the real value for the sample $\lambda_{3}^{s p}$ in range $\pm \mathbf{3 0} \mathbf{~ m m}$ from the real value for the sample	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$		
C2	$I(\theta)$ measurements for red laser: Scored only if minimum is found in range $10-30^{\circ}$ and its transmittance value is lower that 0.9 - number of points is 10 and more (from 5 to 9 , less than 5) ; - angle range (from 10° to 50°)	$\begin{array}{\|l} 0.3 \\ (0.2,0) \\ 0.2 \end{array}$		
C3	$I(\theta)$ measurements for green laser: Scored only if minimum is found in range $20-45^{\circ}$ and its transmittance value is lower that 0.5 - number of points is 10 and more (from 5 to 9 , less than 5) ; - angle range (from 10° to 50°)	$\begin{array}{\|l} 0.3 \\ (0.2,0) \\ 0.2 \end{array}$		
C4	$I(\theta)$ measurements for blue laser: Scored only if at least 1 minimum is found in range $10^{\circ}-65^{\circ}$ and its transmittance value is lower that 0.9 . - number of points is 10 and more (from 5 to 9 , less than 5) ; - angle range (from 10° to 65°)	$\begin{array}{\|l} 0.3 \\ (0.2,0) \\ 0.2 \end{array}$		

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { D2 } & \begin{array}{l}m \text { deriving method: } \\ 1 / \lambda^{(n)} \text { values analysis } \\ \text { Searching for missing minima (using graph or } \\ \Delta\left(1 / \lambda^{(n)}\right) \text { calculation or equivalent) } \\ m \text { numerical values } \\ 0.2 \text { for each correct value (no more than } 1.2 \text { in total) } \\ \text { Error } \pm 1 \text { for } m \text { value }\end{array} & 0.2 \times 6 & 0.4 & \\ \hline & D_{Z} \text { value in range 1680 }-\mathbf{1 9 2 0} \mathbf{~ n m ~} & 0.1 \times 6\end{array}\right)$

