

Marking scheme (minimal score 0.1pt)

Marker _____

Student _____

TOTAL _____

Task	Criteria	Max. points	Marker	Consensus
A1	Diffraction grating equation	0.1		
A2	$\theta(\phi)$ measurements:	1.0		
	- 0.2 for each point (not greater than 1.0)			
	φ in range 35-45° θ in range 15-65°			
A3	Linearization:			
	- $\sin^2 \theta$ from $\sin^2 \varphi$ dependence;	0.3		
	Calculation of the $\sin^2 \theta$ and $\sin^2 \varphi$ values;	0.3		
	Graph plotting (only in linearized coordinates)	0.9-		
	(axis labeled and scaled, experimental points plotted,	$0.7 = 0.3 r^{3}$		
	linear fit line shown);	0.575		
A4	Sample parameters calculation (scored only if A2			
	score ≥ 0.4):			
	Numeric parameters of the linear fit written			
	Two points only	0.2		
	Formulae for D = n calculation using linear fit	(0.2)		
	Formulae for D_X , n_X calculation using linear in	(0.1)		
	parameters	0.2		
	n_x value in range 1.4-1.0	0.2		
	D_X value in range 210-250 nm	0.3		
	Part A total	3.5		
B1	$\lambda = 659nm$ selected	0.1		
B2	$I(\theta)$ measurements:			
	Scored only if minimum is found in range 20-45° and			
	its transmittance value is lower that 0.5	0.5		
	- number of points 10 and more (from 5 to 9, less	0.6		
	<i>than 5</i>);	(0.3; 0)		
	- angles range (not less than 25° near minimum)	0.4		
B3	Graph plotted:			
	(axis labeled and scaled, experimental points plotted,	0.2		
	approximating curve shown);	0.6		
		0.2		
B4	θ_1 value in range 20-45°	0.1		
	$\Delta \theta$ value in range 10-20°	0.1		
B5	Formula for λ_X	0.1		
	Numerical value for λ_x in range ± 15 nm from the	0.1		
	real value for the sample			

B6	$\Delta\lambda$ calculation:		
	Transition from θ to λ ;	0.2	
	Low $\Delta \theta$ value approximation	0.1	
	Numerical value for Δn in range $0,09 - 0,15$	0.4	
B7	Numerical value for θ_2 in range 30-60°	0.3	
B8	Formulae for p and n_{AAO} calculation	0.2+0.2	
	Numerical value for p in range 0,15 – 0,35	0.3	
	Numerical value for n_{AAO} in range 1,55 – 1,75	0.3	
B9	Formula for p_i versus n_i	0.1	
	n_1, n_2 values selection	0.1	
	Numerical values for:		
	p_1 in range 0,05 – 0,25	0.2	
	p_2 in range 0,2 – 0,45	0.2	
	Part B total	5.0	
C1	Values		
	λ_1^{sp} in range \pm 30 nm from the real value for the	0.2	
	sample		
	λ_2^{sp} in range \pm 30 nm from the real value for the	0.2	
	sample	0.2	
	λ_3^{sp} in range \pm 30 nm from the real value for the	0.2	
	sample		
C2	$I(\theta)$ measurements for red laser:		
	Scored only if minimum is found in range 10-30°		
	and its transmittance value is lower that 0.9	0.2	
	- number of points is 10 and more (<i>from 5 to 9, less</i>	(0.3)	
	than 5);	(0.2, 0)	
C3	- angle range ($J70m$ 10 10 50)	0.2	
05	Scored only if minimum is found in range 20.45°		
	and its transmittance value is lower that 0.5		
	- number of points is 10 and more (from 5 to 9. less	0.3	
	<i>than 5</i>);	(0.2, 0)	
	- angle range (from 10° to 50°)	0.2	
C4	$I(\theta)$ measurements for blue laser:		
	Scored only if at least 1 minimum is found in range		
	10° - 65° and its transmittance value is lower that		
	<u>0.9.</u>		
	- number of points is 10 and more (from 5 to 9, less $(1 - 5)$)	0.3	
	than 5);	(0.2, 0)	
	- angle range (from 10° to 65°)	0.2	

C5	Normal wavelengths calculation (in the wavelength	0.1	
	descending order)	0.1	
	$\lambda_1^{(n)}$ value in range ± 15 nm from the real value for		
	the sample	0.1	
	$\lambda_2^{(n)}$ value in range ± 15 nm from the real value for	0.1	
	the sample	0.1	
	$\lambda_3^{(n)}$ value in range ± 15 nm from the real value for		
	the sample	0.1	
	$\lambda_4^{(n)}$ value in range ±15 nm from the real value for	0.2	
C	the sample	0.2	
0	Appropriate method Correct value for w correction director $2^{(n)}$ (in one of	0.2	
	Correct value for <i>m</i> corresponding to λ_i^{*} (<i>in case of</i>	4x0.2	
	error in $m \pm 1$)	(0.1)	
C7	D_{Y} value in range 1000 – 1160 nm	0.2	
C8	I_1 , I_2 values obtained for 3-4 minima (for 1-2	0.2	
	minima)	(0.1)	
	t numerical values:	0.1	
	t ₁ >0.45	0.1	
	t ₂ <0.35	0.1	
	t ₃ <0.35	0.1	
	t ₄ >0.45		
	Part C total	4.5	
D1	Experimental setup for wavelength measurement	0.1	
	sketch;	0.1	
	Formula for $\lambda^{(n)}$ calculation;	0.1	
	wavelengths values (in the descending order) $\lambda^{(n)}$ values in range, 700, 840 nm		
	λ_1 value in range 790 -840 init		
	$\lambda_2^{(n)}$ value in range ± 15 nm from the real value for		
	the sample $2^{(n)}$ are by the same 15 and 5 from the same back form		
	λ_3 value in range ± 15 nm from the real value for		
	the sample $2^{(n)}$ 1 (n) 1 (n) (n) (n) (n)		
	λ_4^{\prime} value in range ± 15 nm from the real value for		
	the sample $2^{(n)}$ value in some ± 15 nm from the real value for		
	λ_5 value in range \pm 15 nm from the real value for		
	the sample $2^{(n)}$ value in source 400, 420 sec.		
	λ_6^{-1} value in range 400-420 nm	0.2*5	
	10.2 pt for each (no more than 1.0)	0.2 Å J	1

D2	<i>m</i> deriving method:		
	$1/\lambda^{(n)}$ values analysis	0.4	
	Searching for missing minima (using graph or		
	$\Delta(1/\lambda^{(n)})$ calculation or equivalent)	0.4	
	<i>m</i> numerical values	0.0.0	
	0.2 for each correct value (no more than 1.2 in total)	0.2x6	
	Error ± 1 for m value	0.1x6	
D3	<i>D_z</i> , value in range 1680 – 1920 nm	0.1%0	
D4	m' values obtained from D2	0.1x2	
	Values for missing $2^{(n)}$ obtained in range + 15 nm	0.1742	
	Values for missing λ_m obtained in range \pm 13 mm	0.4x2	
	from the real value for the sample	4.5	
	Part D total	4.5	
E1	Scored only if t values in task C8 obtained		
	Correct sample structure name selected (n-6)	0.2	
	t values are in agreement with the table in Appendix		
	(central minima are deep, peripheral minima are	1.0	
	shallow)		
E2	Idea: structure selection using missing minima	0.3	
	numbers		
	Points below are given only if the missing minima		
	in task D4 are correct!	0.2	
	Correct sample structure name selected (hi5-5)		
	Missing minima numbers are in agreement with the	0.8	
	table in Appendix		
	Part E total	2.5	
	Total points	20	
	•		