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Optical trap of neutral atoms (12 points)
Optical traps are versatile tools to create ultracold atom systems that nowadays play very important
role in quantum physics and are believed to have highly nontrivial applications in technology as well as
in quantum measurements. By shining laser beam onto an assembly of neutral atoms, we are able to
capture and cool these atoms. When atoms are cooled to near absolute zero temperature, they reveal
the whole fascinating quantum behavior, in particular their Bose-Einstein condensation (BEC).

In this problem you will study basic concepts of optical trap of neutral atoms and one of the signatures
to recognize the BEC in experiments on sodium atoms.

An neutral sodium atom can be well described as a core with positive charge e surrounded by homoge-
nous electron cloud with negative charge -e. The mass of the core is much larger than the mass of the
electron cloud. In the absence of an external electric field, the core and the cloud centers coincide. The
electric field of laser beam interacts with the positive core as well as the electron cloud of the atom, so
an electric dipole is induced. In turn, this induced dipole will interact with the electric field of laser beam
and thereby gives rise to a dipole potential energy of the atom. One says that the atom feels an optical
potential. The later depends on the intensity profile 𝐼( ⃗𝑟) as well as the frequency of the laser beam in
use. By choosing appropriate laser intensity and frequency, one may form a trap-like potential well to
confine the neutral atoms.

We start off by considering the polarization of a neutral atom that is placed in a uniform external electric
field ⃗𝐸0 = 𝐸0𝑢̂, where 𝑢̂ is a unit vector and 𝐸0 is the field magnitude. Then, a dipole moment ⃗𝑝0 = 𝑒ℓ𝑢̂ =
𝛼𝐸0𝑢̂ is induced. Here, ℓ is distance between the negative and positive charge centers, and 𝛼 is called
polarizability.

Figure 1. Electron cloud distribution. [1] Spherical distribution of electron cloud about the
atomic core; [2] Shifted electron cloud (separation of + and - within the atom) in an electric
field.

1 (1.5 points)
Initially the external field is turned off. Then the field magnitude is increased from zero to 𝐸0 very slowly
so that the electric field can be considered effectively time-independent in this question. The instanta-
neous value of the external field is denoted by ⃗𝐸 = 𝐸𝑢̂,

1.1 Find the instantaneous power absorbed by the atom from the external field in
terms of ⃗⃗⃗ ⃗⃗ ⃗𝐸 and ̇⃗𝑝, where ̇⃗𝑝 is the rate change of the induced dipole moment.
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1.2 Find the total work done by the external field on the atomwhen the electric field
increased from zero to 𝐸 = 𝐸0, hence deduce an expression for the induced
dipole potential energy 𝑈𝑖𝑛𝑑𝑢𝑐𝑒𝑑 in terms of ⃗𝐸𝑜 and ⃗𝑝𝑜.

0.75pt

Note that when the external electric field is turned off, the electron cloud oscillates with the natural
frequency 𝜔0 due to its inertia and the Coulomb restoring force.

2 (1.0 point)
In the following we will study the case where the neutral atoms are placed in an external field of a laser
that varies in time and space as ⃗𝐸( ⃗𝑟, 𝑡) =𝑢̂.𝐸0( ⃗𝑟)cos𝜔𝑡 . The induced dipole moments ⃗𝑝 will oscillate with
the driving laser field frequency 𝜔. It is well-known that an oscillating dipole itself emits electromagnetic
radiation. By doing so, electron receives some recoil momentum that causes an electromagnetic friction
resulting in a phase shift between the applied electric field and the induced dipole moment. Therefore,
the induced dipole moment takes the form ⃗𝑝( ⃗𝑟, 𝑡) = 𝑢̂𝐸0( ⃗𝑟)𝛼(𝜔) cos[𝜔𝑡 + 𝜑(𝜔)]. Here, both the polariz-
ability 𝛼 and the phase shift 𝜑 depend on the driving frequency 𝜔 . Due to the oscillating nature, all
physical quantities of our interest reveal themselves only via the corresponding time-averaged values
over a period 2𝜋/𝜔 of the laser field. Time-averaged value of a periodically varying quantity is defined as

⟨𝑓 (𝑡)⟩ = 𝜔
2𝜋

2𝜋/𝜔
∫
0

𝑓 (𝑡) 𝑑𝑡. Hereafter, the notation ⟨...⟩ means time-average of the enclosed quantity.

Laser intensity 𝐼( ⃗𝑟) is related to amplitude of the laser electric field 𝐸0 as 𝐼( ⃗𝑟)= 𝜀0𝑐𝐸2
0( ⃗𝑟)

2 , where 𝜖0 is the
permittivity of free space and 𝑐 is the speed of light.

2.1 Find the induced dipole potential energy 𝑈𝑑𝑖𝑝 ( ⃗𝑟) = ⟨𝑈𝑖𝑛𝑑𝑢𝑐𝑒𝑑 ( ⃗𝑟, 𝑡)⟩ in term of
𝛼, 𝜑, 𝜀0, 𝑐, and 𝐼( ⃗𝑟).

1.0pt

3 (1.0 point)
Besides capturing neutral atoms in the trap via the induced dipole potential energy, the oscillating elec-
tric field may cause the scattering force on atoms that arises from absorption and emission of light. The
light scattering processes lead either to heating or to losses of atoms from the trap and may be charac-
terized by the scattering rate, that is related to the number of photons scattered by an atom in unit time

and is defined by Γ𝑠𝑐( ⃗𝑟) = ⟨𝑃𝑎𝑏𝑠( ⃗𝑟)⟩
ℏ𝜔 . Here, ⟨𝑃𝑎𝑏𝑠( ⃗𝑟)⟩ is the time-averaged power absorbed from the laser

field, and ħ𝜔 is the photon energy (ħ = ℎ/2𝜋) .

3.1 Find the scattering rate Γ𝑠𝑐( ⃗𝑟) in term of 𝛼, 𝜑, 𝜀0, 𝑐, 𝐼( ⃗𝑟), ħ and 𝜔. 1.0pt

4 (2.0 points)
Both quantities𝑈𝑑𝑖𝑝 and Γ𝑠𝑐( ⃗𝑟) depend on the polarizability 𝛼. In order to calculate the polarizability𝛼, we
will adopt the one dimensional oscillator model under the presence of an electric field ⃗𝐸(𝑡) =𝑢̂𝐸0 cos𝜔𝑡.
Call Ox the axis parallel to the unit vector 𝑢̂ . In this model motion of the electron is determined by three
forces:

i) The restoring force −𝑚𝑒𝜔2
0𝑥 ⋅ 𝑢̂ that describes the free oscillation with the natural frequency 𝜔0 corre-

sponding to the atomic optical transition frequency. We use x to denote the displacement of the negative
charge center from the positive one, which is assumed to be at rest.

ii) The driving force of the laser field −𝑒𝐸0𝑐𝑜𝑠𝜔𝑡.𝑢̂
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iii) The damping force −𝑚𝑒𝛾𝜔 ̇𝑥.𝑢̂ that originates from the radiation of the accelerating charge, and is
characterized by the frequency-dependent damping rate 𝛾𝜔.

Therefore, the equation of motion of the electron is given as ̈𝑥 + 𝛾𝜔 ̇𝑥 + 𝜔2
0𝑥 = −𝑒𝐸0 cos𝜔𝑡

𝑚𝑒
. The solution to

this equation is 𝑥 = 𝑥0 cos(𝜔𝑡 + 𝜑). Here 𝑥0 and 𝜑 are to be determined.

4.1 Find the polarizability 𝛼 in term of 𝛾𝜔, 𝑒, 𝑚𝑒, 𝜔0, and 𝜔. 2.0pt

5 (1.0 point)
In fact the energy damping rate 𝛾𝜔 is independent of the electron orbits. Therefore wewill adopt another
simplemodel where the electron cloud center performs a circularmotion in the absence of the laser field
but with the frequency 𝜔 and speed 𝑣. Being accelerated, the electron radiates an electromagnectic wave
with power given by the Larmor formula 𝑃𝐿 = 1

6𝜋𝜀0
𝑒2𝑎2

𝑐3 with 𝑎 denoting acceleration. The damping force
is supposed to be related to the damping rate 𝛾𝜔 as 𝐹𝑑 = −𝑚𝑒𝛾𝜔𝑣. We also assume that the total energy
of the electron is large compared with the energy loss per cycle.

5.1 Find the energy damping rate 𝛾𝜔 in term of 𝑒, 𝜖0, 𝑐, 𝑚𝑒, and 𝜔. 1.0pt

6 (0.5 point)
When the driving frequency 𝜔 is close to the natural frequency 𝜔0, the the polarizability gets larger, lead-
ing to a larger value of the dipole potential as well as increased scattering rate. Therefore, by considering
the ratio 𝑈𝑑𝑖𝑝 ( ⃗𝑟)/ħΓ𝑠𝑐 ( ⃗𝑟), one can find an appropriate laser frequency to reduce the scattering rate while
maintaining a reasonably deep trapping potential.

6.1 Introducing the damping rate at𝜔 = 𝜔0, as 𝛾 ≡ 𝛾𝜔0
, find the ratio𝑈𝑑𝑖𝑝 ( ⃗𝑟)/ħΓ𝑠𝑐 ( ⃗𝑟)

in terms of 𝜔, 𝜔0, and 𝛾.
0.5pt

7 (1.5 points)
From the above result we can see that it is possible to simultaneously achieve a deep trapping potential
and low heating rates by choosing the laser frequency 𝜔 being not too close to the atomic optical transi-
tion 𝜔0, as well as high laser intensity. Because the scattering rate Γ𝑠𝑐 ( ⃗𝑟) is positive, and from the above
obtained ratio 𝑈𝑑𝑖𝑝 ( ⃗𝑟)/ħΓ𝑠𝑐 ( ⃗𝑟)one can see if 𝜔 < 𝜔0, the dipole potential is negative and the atoms are
captured in a focused region of laser beam with maximum intensity. Once atoms are captured in the
trap, by reducing the trapping well depth to remove high energy atoms, onemay cool the confined atom
gas to ultracold temperatures, enabling formation of BEC. A breakthrough progress in BEC physics had
been achieved with sodium atoms 23Na in the late nineties (D. M. Stamper-Kurn et al., Phys.Rev.Lett. 80,
2027 (1998)).

The physics of BEC can be understood as follows. In nature, there are two kinds of particles: bosons
with integer spin and fermions with half integer spin. Two identical fermions cannot exist in the same
quantum state. In contrast, multiple bosons are not forbidden to occupy one quantum state: at ultralow
temperatures a large fraction of bosons can condensate into the state with lowest possible energy and
form a condensate cloud (condensate bosons), while the rest bosons are in the excited state with higher
energy (noncondensate or thermal bosons). Let us analyse a practical example of a dilute gas of sodium
atoms, which are bosons, confined in the optical trap created by a Gaussian laser beam (Fig 2a). The
laser beam has the wavelength 𝜆 corresponding to the frequency 𝜔 (with 𝜔 < 𝜔0). The beam propagates
along the z-axis with the intensity profile 𝐼 (𝜌, 𝑧) = 2𝑃

𝜋𝐷(𝑧)2 exp(− 2𝜌2

𝐷(𝑧)2 ), where 𝜌 = √𝑥2 + 𝑦2 and the waist



Theory

Q1-4
English (Official)

size is 𝐷 (𝑧) = 𝐷0√1 + 𝑧2/𝑧2
𝑅 with 𝑧𝑅 = 𝜋𝐷2

0/𝜆 denoting the Rayleigh length. The total laser power P
and the beam waist parameter 𝐷0 determine the parameters of the optical trapping potential, one of
which is the potential depth 𝑈𝑑𝑒𝑝𝑡ℎ. The later is defined by the absolute value of the local minimum of
the potential energy, taking zero reference at infinity (Fig 2b).

Figure 2. (a) Gaussian beam. The envelope represents the beam waist 𝐷(𝑧) at the fix plane
𝑧 = 𝑐𝑜𝑛𝑠𝑡. (Adopted from wikipedia); (b) Illustration of optical trap along x-axis created by a
Gaussian beamwith 𝜔 < 𝜔0. The dash line corresponds to a harmonic approximation near the
trap bottom.

7.1 Find the expression for the dipole potential depth𝑈𝑑𝑒𝑝𝑡ℎ in terms of 𝑐, 𝜔, 𝜔0, 𝛾, 𝑃 ,
and 𝐷0.

0.5pt

7.2 Given laser power 𝑃 = 4 mW, laser wavelength 𝜆 = 985 nm, 𝐷0 = 6𝜇m, and nat-
ural wave length for sodium 𝜆0 = 589 nm. Evaluate the potential depth 𝑈𝑑𝑒𝑝𝑡ℎ,
expressing your answer as an equivalent temperature 𝑇0, at which thermal en-
ergy of the non-trapped atom is equal to the trap depth.

1.0pt

8 (0.5 point)
When the cloud temperature 𝑇 is much smaller than equivalent temperature 𝑇0, the optical potential can
be well approximated by a cylindrically symmetric harmonic potential 𝑈𝑑𝑖𝑝(𝜌, 𝑧) = −𝑈𝑑𝑒𝑝𝑡ℎ + 1

2 𝑚Ω2
𝜌𝜌2 +

1
2 𝑚Ω2

𝑧𝑧2, wherem is themass of sodium atom andΩ𝜌, Ω𝑧 are oscillation frequencies in the corresponding
directions.

8.1 Find the expression for Ω𝜌, Ω𝑧 in terms of 𝑇0, 𝑚, 𝐷0, 𝑧𝑅 and 𝑘𝐵. Here 𝑘𝐵 is the
Boltzmann constant.

0.5pt

Recall that at ultralow temperatures, the sodium atom cloud consists of condensate atoms and thermal
atoms. Condensate bosons behave according to the uncertainty principle that can be used for estimating
the spatial size or the momentum distribution of the cloud. On the other hand, thermal bosons are
described by classical physics, in particular, they obey the Maxwell-Boltzmann distribution law.

We estimate the size of the condensate cloud, that is themean distance of the condensate sodium atoms
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from the trap center. Moving inside this cloud, each condensate atom has potential energy as well as
kinetic energy. The potential energy is a monotonically increasing function of the cloud size, and the
particle tries to reduce it to reach the lowest energy level. On the other hand, as the cloud size decreases,
the uncertainty principle requires an increase in the particle momentum, that results in an increase of
kinetic energy. The particle therefore finds an optimal cloud size to balance the two opposite tendencies
of the two different energy contributions.

9 (1.0 point)
For simplicity, let us consider the simplest case of one dimensional trap potential 𝑈(𝑧) = 𝑐𝑜𝑛𝑠𝑡+ 1

2 𝑚Ω2
𝑧𝑧2.

9.1 Estimate the size 𝑧0 of the condensate fraction in terms of 𝑚, ħ, Ω𝑧. 0.5pt

9.2 Find the expression for 𝐸𝑚𝑖𝑛 - the lowest energy level, in terms of ħ, Ω𝑧. 0.25pt

9.3 Find the average particle velocity 𝜈0 in terms of 𝑚, ħ, Ω𝑧. 0.25pt

In what follows we will figure out how to differentiate the condensate cloud from the thermal one by
switching off the confining trap. It is neccesary to capture the image of the cloud density profile.

The thermal gas will show an isotropic Maxwell velocity distribution even if the trap is anisotropic. In
contrast, the velocity distribution of a BEC is anisotropic. More precisely, the BEC expands faster along
the axis of strong confinement than along the axis of weak confinement. The expansion predominantly
occurs in the radial direction, and the initially cigar-shaped condensate becomes pancake-shaped. There-
fore the density profile after a long time of flightwill be anisotropic and invertedwith respect to the shape
of the cloud in the trap.

Figure 3. Cloud shape. [1] Before switching off the trap; [2] A very long time after switching
off the trap.

10 (2.0 points)
Now we extend the previous results to the three-dimensional potential which is the case of the optical
trap in a Gaussian laser beam.
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10.1 Find the aspect ratio 𝑧0𝜌0
in terms of Ω𝜌, Ω𝑧, where 𝑧0 and 𝜌0 are the initial sizes

of the condensate cloud.
0.5pt

10.2 When the trap is turned off, the condensate will be expanding in different direc-
tions with different initial velocities 𝜈𝜌 and 𝜈𝑧. Determine the ratio 𝜈𝜌

𝜈𝑧
in terms

of Ω𝜌, Ω𝑧.

0.5pt

10.3 Assuming that the velocities of the cloud expansion remain unchanged during
the expansion, find aspect ratio of the condensate cloud after a long period of
time 𝑧𝐿𝜌𝐿

when the cloud size is much greater than its initial size, that is 𝑧𝐿 ≫ 𝑧0
and 𝜌𝐿 ≫ 𝜌0.

0.5pt

10.4 Same as question 10.3., find the aspect ratio of the thermal cloud after a long
period of time 𝑧𝑇,𝐿𝜌𝑇,𝐿

when the cloud size is much greater than its initial size, that
is 𝑧𝑇 ,𝐿 ≫ 𝑧0 and 𝜌𝑇 ,𝐿 ≫ 𝜌0.

0.5pt


