$10^{\text {th }}$ APhO Experimental Competition
 28 April 2009 Marking Scheme

General marking guidelines

1.	Giving correct answers without calculations	Deduct up to 50% of the total points for that part
2.	Minor mistakes in the calculations e.g. wrong signs, symbols, substitutions	Deduct 30%
3.	Missing units in the final numerical answers (for each part)	Deduct 0.1 point
4.	Final answers (for each part) containing too few or too many significant figures.	Deduct 0.1 point
5.	Using wrong physical concepts (despite correct answers)	No points awarded
6.	Error propagated from earlier parts: minor errors	Full points
7.Error propagated from earlier parts: major errors (such that the solution becomes trivial).	Deduct up to 20%	

Marking Scheme: Problem 1

No.	Description	Scores
Section I	Derivation of formula	1 point
	- the horizontal magnetic field for a coil of a single turn $\begin{align*} B_{\mathrm{PX}} & =4 \frac{\mu_{0} i}{2 \pi d} \frac{(a / 2)}{\sqrt{d^{2}+\left(\frac{a}{2}\right)^{2}}} \cos \phi \tag{0.3point}\\ d & =\sqrt{x^{2}+\left(\frac{a}{2}\right)^{2}} \tag{0.1point}\\ \cos \phi & =\frac{(a / 2)}{\sqrt{x^{2}+\left(\frac{a}{2}\right)^{2}}} \tag{0.1point} \end{align*}$ - For a coil of N turns, replace the current with $i N$ (0.2 point) $B_{p x}=\left(\frac{\mu_{0} a^{2} i N}{2 \pi}\right)\left[\frac{1}{\left(x^{2}+\left(\frac{a}{2}\right)^{2}\right) \sqrt{x^{2}+2\left(\frac{a}{2}\right)^{2}}}\right](0.3 \text { point })$	
Section II		
	Measurements to justify that we can ignore the torsion of the string	0.8 point
	- Tabulated data of lengths and periods (total 0.8 point) - At least 1 data point for length of the string from 0 to 10 cm (where the effect of torsion is prominent (0.2 point) - At least 3 data points for length of the string greater than 10 cm (where the effect of torsion is negligible) $\text { (0.2 each }=0.6 \text { point })$	

Section III		
	- Provide the value of the distance	0.2 point
(a)	Coil's magnetic field and Earth's magnetic field are in the same direction	5.0 points
	- Show that $\frac{1}{T^{2}}=\beta B+\beta B_{\mathrm{H}}, \beta=\frac{m}{4 \pi^{2} I}$ (0.2 point) - Tabulated data from measurements for at least 5 different values of $x \quad$ (total 3.0 points) Provide values of B (1.0 point) Provide values of T (minimum 5 measurements with at least 10 oscillations each) (1.5 points) Provide values of $\frac{1}{T^{2}}$ (0.5 point) - Provide a complete graph of $\frac{1}{T^{2}}$ and B (0.8 point) - Provide a value of the slope of the graph. (0.3 point) - Provide a value of the interception of the graph (0.1 point) - Provide a numerical value of B_{H} (0.2 point) - Provide a numerical value of m (0.2 point) - Error estimation (0.2 point)	
(b)	Earth's magnetic field only	1.0 point
	Measure the period accurately (minimum 5 measurements with at least 10 oscillations each) (0.3 point) B_{H} is from 0.25 to 0.35 gauss (max 0.5 point) B_{H} is $0.1-0.25$ or $0.4-0.5$ gauss $(0.3$ point) Otherwise $(0.0$ point) - Error estimation $(0.2$ point)	

(c)	Coil's magnetic field and Earth's magnetic field are in opposite direction	2.0 points
	If B_{H} is from 0.2 to 0.4 gauss, (max. 2.0 points) - Provide the correct value of x_{0} and its measurement details. (1.0 point) - Provide the correct value of B_{H}. (0.5 point) - Estimate the error of B_{H}. (0.5 point) If B_{H} is $0.1-0.2$ or $0.4-0.5$ gauss, (max. 1.0 point) - Provide the correct value of x_{0} and its measurement details. (0.3 point) - Provide the correct value of B_{H}. (0.2 point) - Estimate the error of B_{H}. (0.5 point) For other value of B_{H}, - Estimate the error of B_{H}. (0.5 point)	

Marking Scheme: Problem 2

No.	Description	Scores
Section I	Derivation of formulae	2.0 points
	- $m_{1}=\rho \pi\left[R^{2}-(R-t)^{2}\right] L=\rho \pi\left(2 R t-t^{2}\right) L$ (0.1 point) - $m_{2}=\rho \pi(0.6 \mathrm{~cm}) R^{2} \quad$ (0.1 point) - $m_{3}=\pi(R-t)^{2} L \quad$ (0.1 point) - $M=m_{1}+2 m_{2}+m_{3}$ (0.1 point) - $I_{\mathrm{y}}=\frac{1}{2} m_{1}\left[R^{2}+(R-t)^{2}\right]+2\left[\frac{1}{2} m_{2} R^{2}\right]$: realize that the water does not contribute to the inertia (0.5 point), correctly use the formula for the disc (0.2 point) - Measurements of R, h, L with errors. (0.3 point) - Numerical expressions: for example $\begin{aligned} & m_{1}=339.3 t-67.86 t^{2} \mathrm{~g}, \quad(0.1 \text { point }) \\ & m_{2}=31.8 \mathrm{~g}, \quad(0.1 \text { point }) \\ & m_{3}=157.1-125.7 t+25.13 t^{2} \mathrm{~g}, \quad(0.1 \text { points }) \\ & M=220.7+213.6 \mathrm{t}-42.73 t^{2} \mathrm{~g} \quad(0.1 \text { point }) \\ & I_{\mathrm{y}}=198.8+2121 t-1273 t^{2}+339.3 t^{3}-33.93 t^{4} \mathrm{~g} \mathrm{~cm}^{2} \\ & (0.2 \text { point }) \end{aligned}$	
Section II		
(a)	Angular oscillation about the axis of symmetry	4.0 points
	- Provide the measured value of T_{y} Let n be the number of oscillations. (max. 0.8 point) $n \geq 30$, (0.8 point) ($20 \leq n<30$, (0.6 point)) ($10 \leq n<20, \quad(0.2$ point $))$ ($n<10$, (0 point))	

(b)	Angular oscillation about the central axis perpendicular to the length	2.8 points
	- Provide the measured value of T_{x} Let n be the number of oscillations. (max. 0.8 point)	

	- Provide the error of T_{x} - Provide the numerical value of $I_{x}^{E x p}$ - Provide the numerical value of $I_{x}^{\text {Theo }}$	(0.2 point) (0.5 point) (0.5 point)	
(c)	Comparing experimental and theoretical values of the moment of inertia		1.2 points
	- Provide the correct value of ΔI_{x} - Show that ΔI_{x} is statistically significant - Provide the value of the percentage	$\begin{aligned} & \hline \text { (0.3 point) } \\ & (0.2 \text { point }) \\ & (0.7 \text { point }) \end{aligned}$	

