## Theory





# **Vortices in Superfluid**

#### Part A. Steady filament (0.75 points)



**A.2** (0.5 pt)

z(r) =



#### Part B. Vortex motion (1.25 points)

**B.1** (0.25 pt)  $v_0 =$ 



**B.3** (0.4 pt)

 $v\left( \overrightarrow{r}\right) =% {\displaystyle\int\limits_{0}^{\infty }} \left( \overrightarrow{r}\left( \overrightarrow{r}\right) -\overrightarrow{r}\left( \overrightarrow{r}\right) -\overrightarrow{$ 

**B.4** (0.2 pt)

AB(t) =

### Theory





**B.5** (0.25 pt)

 $z\left( \vec{r}\right) =$ 

#### Part C. Momentum and Energy (1.75 points)



C.2 (0.7 pt)

U =

 $\mathbf{C.3} \ (0.75 \ \mathrm{pt})$ 

 $\left| \Delta \vec{P} \right| =$ 





#### Part D. Trapped charges (2.5 points)

D.1 
$$(0.5 \text{ pt})$$

$$v(t) =$$

$$x$$

$$x$$



**D.3** 
$$(1, 5 \text{ pt})$$
  $v(t) =$ 

$$egin{aligned} extbf{D.4} & (0.25 ext{ pt}) \ v(t) = \end{aligned}$$



#### Part E. Influence of the boundaries (2.75 points)



**E.2** (0.75 pt)

 $v_0 =$ 

**E.3** (0.5 pt)



**E.4** (1 pt)

 $v_{\infty} =$ 

## Theory



### Part F. Charges + Walls (1 point)



