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Zero-length springs and slinky coils – Solution 

Part A: Statics 

A.1 The force 𝐹 causes the spring to change its length from 𝐿0 to 𝐿. Since equal parts of the 

spring are extended to equal lengths, we get: 
Δ𝑦

Δ𝑙
=

𝐿

𝐿0
→ Δ𝑦 =

𝐿

𝐿0
Δ𝑙. 

Since 𝐿 = max {
𝐹

𝑘
, 𝐿0}, we get Δ𝑦 = max⁡{

𝐹

𝑘𝐿0
Δ𝑙, Δ𝑙}. From this result we see that any piece of 

length Δ𝑙 the spring behaves as a ZLS with spring constant 𝑘∗ = 𝑘
𝐿0

Δ𝑙
. 

 

A.2 Let us compute the work of the force. From Task A.1: 𝑑𝑊 = 𝐹(𝑥)𝑑𝑥 =
𝑘𝐿0

Δ𝑙
𝑥𝑑𝑥. 

Hence, Δ𝑊 = ∫
𝑘𝐿0

Δ𝑙
𝑥𝑑𝑥

Δ𝑦

Δ𝑙
=

𝑘𝐿0

Δ𝑙

𝑥2

2
|
Δ𝑙

Δ𝑦

=
𝑘𝐿0

2Δ𝑙
(Δ𝑦2 − Δ𝑙2)⁡⁡. 

 

A.3. At every point along the statically hanging spring the weight of the mass below is balanced 

by the tension from above. This implies that at the bottom of the spring there is a section of 

length 𝑙0 whose turns are still touching each other, as their weight is insufficient to exceed the 

threshold force 𝑘𝐿0 to pull them apart. The length 𝑙0 can be derived from the equation: 
𝑙0

𝐿0
𝑀𝑔 = 𝑘𝐿0, hence 𝑙0 =

𝑘𝐿0
2

𝑀𝑔
= 𝛼𝐿0.  

 

For 𝑙 > 𝑙0, a segment of the unstretched spring between 𝑙 and 𝑙 + d𝑙 feels a weight of 
𝑙

𝐿0
𝑀𝑔 

from beneath, which causes its length to stretch from d𝑙 to 𝑑𝑦 =
𝐹

𝑘𝐿0
𝑑𝑙 =

𝑙

𝐿0
𝑀𝑔

𝑑𝑙

𝑘𝐿0
=

𝑀𝑔

𝑘𝐿0
2 𝑙𝑑𝑙 =

𝑙

𝑙0
𝑑𝑙 . 

Integration of the last expression over the stretched region, up to the point 𝐿0, gives its height 

when the spring is stretched 

𝐻 = 𝑙0 + ∫
𝑙

𝑙0
𝑑𝑙

𝐿0

𝑙0

= 𝑙0 +
𝑙2

2𝑙0
|
𝑙0

𝐿0

= 𝑙0 +
1

2𝑙0
(𝐿0

2 − 𝑙0
2) =

𝐿0
2

2𝑙0
+
𝑙0
2
=
𝐿0
2
(𝛼 +

1

𝛼
)⁡ 
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Part B: Dynamics 

B.1. From Task A.3 we have 𝐻(𝑙) =
𝑙2

2𝑙0
+

𝑙0

2
. We now calculate the position of the center of 

mass of the suspended spring. The contribution of the unstretched section of height 𝑙0 at the 

bottom, having a mass of 
𝑙0

𝐿0
𝑀 = 𝛼𝑀, is 𝛼𝑀

𝑙0

2
. The position of the center of mass is obtained by 

summing the contributions of its elements: 

𝐻𝑐𝑚 =
1

𝑀
[
𝑙0
2
𝛼𝑀 + ∫ 𝐻(𝑙)𝑑𝑚

𝐿0

𝑙0

] =
1

𝑀
[
𝛼𝐿0
2

𝛼𝑀 + ∫ (
𝑙2

2𝑙0
+
𝑙0
2
)
𝑀𝑑𝑙

𝐿0
⁡

𝐿0

𝑙0

]

=
𝛼2𝐿0
2

+
1

𝐿0
[
𝑙3

6𝑙0
+
𝑙0
2
𝑙]
𝑙0

𝐿0

=
𝛼2𝐿0
2

+
1

𝐿0
[
𝐿0
3 − 𝑙0

3

6𝑙0
+
𝑙0
2
(𝐿0 − 𝑙0)] 

Where we have used 𝑑𝑚 =
𝑑𝑙

𝐿0
𝑀. Substituting 𝑙0 = 𝛼𝐿0 yields 

𝐻𝑐𝑚 = 𝐿0 [
1

6𝛼
−
𝛼2

6
+
𝛼

2
] 

When the spring is contracted to its free length 𝐿0, its center of mass is located at 
𝐿0

2
. From the 

falling of the center of mass at acceleration 𝑔 we get:  

𝑔

2
𝑡𝑐
2 = 𝐻𝑐𝑚 −

𝐿0
2
= 𝐿0 [

1

6𝛼
−
𝛼2

6
+
𝛼

2
−
1

2
] =

𝐿0
6𝛼

(1 − 𝛼)3 

Hence,  𝑡𝑐 = √
𝐿0

3𝑔𝛼
(1 − 𝛼)3. 

 

For 𝑘 = 1.02 N/m, 𝐿0 = 0.055 m, 𝑀 = 0.201 kg, and 𝑔 = 9.80 m/s2, we have⁡𝛼 = 0.0285, and 

𝑡𝑐 = 0.245⁡s. 

 

B.2. The moving top section of the spring is pulled down by its own weight, 𝑚𝑡𝑜𝑝𝑔 = 𝑀𝑔
(𝐿0−𝑙)

𝐿0
⁡ 

and also by the tension in the spring below, which is equal to the weight 𝑀𝑔𝑙/𝐿0 of the 

stationary section of the spring. Thus, the moving top section experiences a constant force 𝐹 =

𝑀𝑔 throughout its whole fall. Another way to see that, is that a total force of 𝑀𝑔 is exerted on 

the spring, but only the moving part experiences it. Let’s calculate the position of the center of 

mass at equilibrium of the upper part, i.e., all points with 𝑙′ > 𝑙  for some 𝑙 > 𝑙0. From part A, 
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the position of a small portion 'l  with coordinate 'l  is: 𝐻(𝑙′) =
𝑙′2

2𝑙0
+

𝑙0

2
 and the center of 

mass of this part is: 

𝐻𝑐𝑚−𝑢𝑝𝑝𝑒𝑟−𝑖 =
𝐿0

𝑀(𝐿0 − 𝑙)
∫ 𝐻(𝑙′)𝑑𝑚

𝐿0

𝑙

=
𝐿0

𝑀(𝐿0 − 𝑙)
∫ (

𝑙′2

2𝑙0
+
𝑙0
2
)𝑑𝑚

𝐿0

𝑙

=
𝐿0

𝑀(𝐿0 − 𝑙)
∫ (

𝑙′2

2𝑙0
+
𝑙0
2
)
𝑀𝑑𝑙′

𝐿0
⁡

𝐿0

𝑙

=
1

(𝐿0 − 𝑙)
∫ (

𝑙′2

2𝑙0
+
𝑙0
2
)𝑑𝑙′⁡

𝐿0

𝑙

=
1

(𝐿0 − 𝑙)
[
𝑙′3

6𝑙0
+
𝑙0𝑙

′

2
]
𝑙

𝐿_0

=
𝐿0
2 + 𝐿0𝑙 + 𝑙2

6𝑙0
+
𝑙0
2

 

The position of the upper part of CM when it contracts to a length 𝐿0 − 𝑙 is 𝐻𝑐𝑚−𝑢𝑝𝑝𝑒𝑟−𝑓 =
𝑙2

2𝑙0
+

𝑙0

2
+

1

2
(𝐿0 − 𝑙). The change in the CM during the contraction process is: Δ𝐻𝑐𝑚−𝑢𝑝𝑝𝑒𝑟 =

𝐻𝑐𝑚−𝑢𝑝𝑝𝑒𝑟−𝑖 − 𝐻𝑐𝑚−𝑢𝑝𝑝𝑒𝑟−𝑓 =
𝐿0
2+𝐿0𝑙−2𝑙

2

6𝑙0
−

1

2
(𝐿0 − 𝑙) =

(𝐿0−𝑙)(𝐿0+2𝑙)

6𝑙0
−

1

2
(𝐿0 − 𝑙). 

The acceleration of the CM of the upper part is  𝑎𝐶𝑀 =
𝐹𝐿0

𝑀(𝐿0−𝑙)
=

𝑔𝐿0

𝐿0−𝑙
.   

From the work energy theorem we get the equation 𝑣𝑢𝑝𝑝𝑒𝑟−𝑓
2 = 2𝑎𝐶𝑀Δ𝐻𝑐𝑚−𝑢𝑝𝑝𝑒𝑟, hence 

𝑣𝑢𝑝𝑝𝑒𝑟−𝑓
2 = 2

𝑔𝐿0
𝐿0 − 𝑙

[
(𝐿0 − 𝑙)(𝐿0 + 2𝑙)

6𝛼𝐿0
−
1

2
(𝐿0 − 𝑙)] = 2𝑔 [

𝐿0 + 2𝑙

6𝛼
−
1

2
𝐿0]

=
2𝑔

3𝛼
𝑙 + (

1

3𝛼
− 1)𝑔𝐿0 

Therefore, 𝐴 =
2𝑔

3𝛼
 and 𝐵 = (

1

3𝛼
− 1)𝑔𝐿0. 

Note that for 𝑙 = 𝐿0, we have ⁡𝑣𝑢𝑝𝑝𝑒𝑟−𝑓
2 = 𝐿0𝑔

1−𝛼

𝛼
 and for 𝑙 = 𝑙0 = 𝛼𝐿0, we get ⁡𝑣𝑢𝑝𝑝𝑒𝑟−𝑓

2 =

𝐿0𝑔
1−𝛼

3𝛼
 , hence, the moment we release the spring its velocity is finite (not zero, the meaning is 

that it accumulate this velocity in time that is much shorter than the contracting time ct ) and it 

decreases to 
1

√3
 of the initial value when 𝑙 = 𝑙0. 

 

B.3. Note that even though the center of mass of the spring accelerates downwards constantly, 

the moving top section actually decelerates, while the position of the center of mass moves 

down the spring. The speed of the top section 𝑣(𝑙), calculated in Task B2, decreases and 
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approaches the  value  √𝐴𝛼𝐿0 + 𝐵 immediately before it attaches to the bottom section of 

height 𝑙0 = 𝛼𝐿0, which was unstretched and at rest. Once the moving top section attaches to 

the resting bottom section, its momentum is shared between both sections, so the speed 

further decreases just before the whole spring starts accelerating downwards as a single mass. 

Thus, the minimum speed is that of the whole spring immediately after its full collapse. From 

momentum conservation, we have 

𝑀𝑣𝑚𝑖𝑛 = 𝑚𝑡𝑜𝑝𝑣(𝑙0) = 𝑀 (1 −
𝑙0
𝐿0
)√𝐴𝛼𝐿0 + 𝐵 

𝑣𝑚𝑖𝑛 = (1 − 𝛼)√𝐴𝛼𝐿0 + 𝐵 

Part C: Energetics 

C.1. From the moment the spring is released, the acceleration of its center of mass is governed 

by the external force 𝑀𝑔 and therefore the gravitational potential energy of the spring is fully 

converted into the kinetic energy of the center of mass of the spring, which just before hitting 

the ground is equal to the kinetic energy of the spring. 

All that is left is the elastic energy stored in the spring, which is converted into heat, sound, etc. 

To calculate it, we consider the elastic energy stored in a segment 𝑑ℎ of the stretched spring, 

which when unstretched lies between 𝑙 and 𝑙 + d𝑙, using the result of Task A.2, Δ𝑊 =
𝑘𝐿0

2Δ𝑙
(Δ𝑙2

2 − Δ𝑙2), by choosing Δ𝑙 = 𝑑𝑙 and Δ𝑙2 = 𝑑𝑦, and using 𝑑𝑦 =
𝑙

𝑙0
𝑑𝑙 (which was obtained 

in Task A.3), we get: 

𝑑𝑊 =
𝑘𝐿0

2
(
𝑙2

𝑙0
2 − 1)𝑑𝑙. Integrating from 𝑙0 to 𝐿0 we find 

𝑊 = ∫
𝑘𝐿0
2

(
𝑙2

𝑙0
2 − 1)𝑑𝑙

𝐿0

𝑙0

=
𝑘𝐿0
2

[
𝑙3

3𝑙0
2 − 𝑙]

𝑙0

𝐿0

=
𝑘𝐿0
2

(
𝐿0
3 − 𝑙0

3

3𝑙0
2 − (𝐿0 − 𝑙0))

=
𝑘𝐿0

2

2
(
1 − 𝛼3⁡

3𝛼2
− (1 − 𝛼)) =

𝑘𝐿0
2

6𝛼2
(1 − 𝛼)2(2𝛼 + 1)

= 𝑀𝑔𝐿0
(1 − 𝛼)2(2𝛼 + 1)

6𝛼
 


