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PART A: LUMPED ELEMENT MODEL OF A CO-AXIAL TRANSMISSION LINE

A.1 The speed of wave propagation in free spaces (c0 = 299 792 458m/s) is c0 = 1/
√
ε0 µ0. The speed in the dielectric

& diamagnetic medium is

v =
1

√
εr ε0 µr µ0

=
c0√
εr µr

(1)

A.2 Gauss law for the flux through a cylindrical surface with radius r co-axial with the the core, a < r < b:

∆l 2πr E(r) =
∆q

εrε0
⇒ E(r) =

∆q

∆l

1

2πεrε0r
(2)

A.3 The capacitance

c∆l =
∆q

ϕ
(3)

where the potential ϕ of the core with respect to the shield is

0− ϕ = −
∫ b

a

E(r) dr ⇒ ϕ =
∆q

∆l

1

2πεrε0
ln

b

a
(4)

c =
2πεrε0

ln b
a

(5)

A.4 The magnetic flux through a rectangular contour paralel to the axis equal inductance times the current:

∆l

∫ b

a

B(r) dr = l∆l I (6)

Biot-Savart law B(r) = µrµ0

2π
I
r gives

l =
µrµ0

2π
ln

b

a
(7)

A.5 i. Adding ∆l length of the cable should not change its impedance. Hence the impedance Z of the following
circuit must be equal to Z0:

1

Z
=

1

Z0 + jω∆L
+

1
1

jω∆C

=
1

Z0
(8)

Z0 + iω∆LZ0 −∆L/∆C = 0 (9)

∆L/∆C = l/c and the ∆L → 0 for ∆l → 0, hence

Z0 =
√

l/c (10)

ii.

Z0 =
√

l/c =
ln(b/a)

2π

√
µrµ0

εrε0
= ln(b/a)

√
µr

εr
× 59.96Ω (11)

For Z0 = 50Ω, εr = 4.0 and µr = 1.0 this gives b = 5.30 a.
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PART B: HYPOTHETICAL TRANSMISSION LINE WITH RETURN ALONG A GROUNDED PLANE

B.1 The high-conductance ground plate can be replaced by an image of the wire with opposite direction of the
current at distance 2d from the real wire. The magnetic fields from the real and the imaginary wires add up
and need to be integrated to get the magnetic flux between the wire and the plate:

l∆l I =
µµ0

2π
I

∫ d

a

(
1

r
+

1

2d− r

)
︸ ︷︷ ︸

≈2d/r

dr∆l (12)

l =
µµ0

2π
ln

2d

a
(13)

The potential difference between the wire and the plate can be obtained similarly by integrating the combined
field for the wire and its image:

ϕ =
∆q

∆l

1

2πεrε0

∫ d

a

(
1

r
+

1

2d− r

)
dr =

∆q

∆l

ln(2d/a)

2πεrε0
(14)

c =
∆q

∆l

1

ϕ
=

2πεrε0
ln(2d/a)

(15)

Hence the impedance of the wire-plate system is

Z0 =
√

l/c =
ln(2d/a)

2π

√
µrµ0

εrε0
= ln(2d/a)

√
µr

εr
× 59.96Ω (16)

PART C: BASICS OF RF REFLECTOMETRY

C.1 At the interface, values of the voltage on both transmission lines have to coincide:

Vi + Vr = Vr (17)

The current has to be conserved at the interface, however, the incident and the reflected waves carry the current
in opposite directions:

Vi

Z0
− Vr

Z0
=

Vt

Z1
(18)

It is clear from the equation above that Vt ̸= 0 if Z0 ̸= Z1 – impedance mismatch has to cause reflection. Solving
the voltage and the current equations for Γ = Vr/Vi gives

Γ =
Z1 − Z0

Z1 + Z0
(19)

C.2 A π-shift implies opposite signs of Vi and Vr and hence requires Γ < 0. This implies Z1 < Z0.

PART D: THE SINGLE ELECTRON TRANSISTOR

D.1 i. The potential on the QD is

φn = Vg +
−ne

Cg
(20)

where e > 0 is the elementary charge.
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ii. Bringing the additional electron decreases the potential to φn+1 = φn − e/Cg. The work necessary to
perform the transition is

∆En = −e
φn + φn+1

2
=

e2

Cg

(
n+

1

2

)
− eVg (21)

Note that without Ct ≪ Cg approximation, the answer is ∆En = e2

Cg+Ct

(
n+ 1

2

)
− eVgCg/(Ct + Cg).

D.2 Consider such Vg that ∆EN → 0+. Then ∆EN+1 = e2

Cg
can become the new equilibrium addition energy once

Vg is made slightly more positive another electron jumps onto the dot, N → N + 1. Further increase of Vg

only lowers the addition energy till the next resonance condition is reached. In other words, ∆EN (Vg)(Vg) is a
periodic function of Vg with a discontinuity at the maximal value of

Ec =
e2

Cg
(22)

D.3 Thermal energy per electron kBT should not exceed characteristic addition energy Ec:

kBT < Ec (23)

Here kB is the Boltzmann constant.

D.4 i. τ = Rt Ct

ii. Quantum uncertainty of energy (life-time broadening) h/τ must be less the energy difference between the
states with n and n+ 1 electrons,

h/τ < Ec (24)

h

RtCt
<

e2

Ct + Cg
(25)

Rt >
h

e2
Ct + Cg

Ct
>

h

e2
(26)

PART E. RF REFLECTOMETRY TO READ OUT SET STATE

E.1

Γ =
ZSET − Z0

ZSET + Z0
(27)

ΓON =
105 − 50

105 + 50
≈ 1− 2

50

105
(28)

ΓOFF = lim
Z1→∞

Z1 − Z0

Z1 + Z0
= 1 (29)

∆Γ = |ΓON − ΓOFF| ≈ 1.0 · 10−3 (30)

E.2 In the OFF state of the SET, the circuit is an LC contour with resonance frequency ω0 = 1/
√
L0C0. If we

choose L0 such that ω0 = ωrf, then Ztot (the total impedance of the circuit) in the OFF state of the SET equals
to 0 and the reflectance is that of a short-circuited line, ΓOFF = −1.

The change in reflectance will be large if |Ztot| is the ON state is on the order of Z0 or larger, which is indeed
the case. For the ON state and ω0 = ωrf

Ztot =

(
1
1

jωC

+
1

RSET

)−1

+ jωL (31)

=
RSET

1 + jωC RSET
+ jωL (32)

=
RSET + i

√
L/C

1 +R2
SETC/L

(33)
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For C0 = 0.4 · 10−12F, Z0 = 50Ω and ωrf = 2π · 108 Hz, we have L0 = 6.33mH, Ztot = (158 + 6.3 j)Ω,
ΓON = 0.5198 + 0.0145 j, and ∆Γ = 1.52.

PAR F. CHARGE SENSING WITH A SINGLE LEAD QUANTUM DOT

F.1 The SLQD readout circuit contains only reactive elements, so |Γ| = 1 will always be zero. The OFF state of the
SLQD corresponds to an inductor L0 and a capacitor C0 connected in series. We again choose ωrf = 1/

√
L0C0,

so that Ztot is the OFF state is infinite and ΓOFF = 1.

The ON state corresponds to ZSET = −j 1
ωrfCq

and Ztot at ωrf = ω0 is just the impedance of the SLQD

Ztot =
1

(jωrfL0)−1 + jωrf(C + Cq)
= −j

1

ω0Cq
= −j

C0

Cq
ZC (34)

For the phase of ΓON = (Ztot −Z0)/(Ztot +Z0) to be significantly different from zero, we need |Ztot| ∼ Z0 since
Ztot is purely imaginary. Hence

ZC ∼ Cq

C0
Z0 (35)

F.2 If L0 is fixed, we can still operate the circuit at the frequency ωrf = 1/
√
L0C0 that gives ΓOFF = 1. However,

we need to deduce a way to increase |Ztot| even if ZC is not sufficient. One of the ways to do that is to add an
additional capacitance Cm is series with rest of the circuit.

This will give (at ωrf = ω0)

Ztot = −j

(
C0

Cq
ZC +

1

ω0Cm

)
= −jω−1

0

(
C−1

q + C−1
m

)
(36)

From the condition |Ztot| ≈ Z0 we have

Cm ≈ Cq

Z0Cqω0 − 1
=

Cq

√
L0C0

Z0Cq −
√
L0C0

(37)


